ANNEXURE II

XXXXX
(Sub Code)

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Sub Code)

L T P C 3 1 0 4

(III SEM FOR CIVIL & MECH)

COURSE OBJECTIVES:

To make the student conversant with the

- ✓ Concept of PDE for solving standard partial differential equations.
- ✓ Concept of Fourier series and its properties.
- Effective mathematical tools for the solutions of partial differential equations that model several physical processes.
- ✓ Fourier series techniques in solving heat flow problems used in various situations.
- ✓ Develop the concept of Z-transform techniques for discrete time systems.
- ✓ Real-world case studies on transforms and partial differential equations.

UNIT - 1 PARTIAL DIFFERENTIAL EQUATIONS

10

Applications: Space Weather Prediction, Traffic Flow Modeling, Control of Dynamic Systems.

Solutions of standard types of first order partial differential equations - First order partial differential equations reducible to standard types - Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of homogeneous types.

UNIT - 2 FOURIER SERIES

10

Applications: Image Smoothing, Denoising Ophthalmology, Image in painting.

Dirichlet's conditions -Fourier series - Odd and even functions - Half range sine series and Half range cosine series - Root mean square value - Parseval's identity - Harmonic analysis.

APPLICATIONS OF PARTIAL DIFFERENTIAL UNIT - 3 EOUATIONS 10

Applications: Heat Conduction (Heat Equation), Wave Propagation (Wave Equation), Electromagnetism (Maxwell's Equations).

Classification of PDE- Fourier series solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction (Cartesian coordinates only).

UNIT - 4 FOURIER TRANSFORMS

10

10

Applications: Diffusion of Chemicals, Crystal Growth Chemical Reactions.

Fourier integral theorem (Statement only) - Fourier transform pair - Fourier sine transform and Fourier cosine transforms - Convolution theorem - Parseval's identity.

UNIT - 5 Z-TRANSFORMS AND DIFFERENCE EQUATIONS

Applications: Orthogonal Frequency, Division Multiplexing (OFDM), Modulation and Demodulation Interest Rate Models.

Z-transforms - Elementary properties - Convergence of Z-transforms - Initial and final value theorems -Inverse Z-transform using partial fraction and convolution theorem- Formation of difference equations - Solution of difference equations using Z - transforms.

Comparison the free and forced vibrations in a string using partial differential equations – Analysis of the digital suspension and mechanical feedback control system using Z-transforms and difference equations – Calculation of the temperature, regulation of speed and precision matching using difference equations – Determining the heat flow in parallel pipes using one dimensional heat equation – Calculation of periodic vibrations in structural beam using Fourier series – Calculation of diffusion in chemicals and study of unstable crystal growth using Fourier transforms.

TOTAL: 60 PERIODS

OUTCOMES:

At the end of the course, the students will be able to

- 1. Solve the given first order and second order partial differential equations using Lagrange's method and analytical method.
- 2. Calculate the Fourier series, Half range Sine series and Half range Cosine series for a given function using the concept of odd and even function.
- 3. Solve problems based on one-dimensional heat equation and one-dimensional wave equation using Fourier series techniques.
- 4. Analyze Fourier transform, Fourier Sine transform and Fourier Cosine transform for a given function using convolution theorem and Parseval'sidenty.
- 5. Calculate Z transform of a given function and obtain the solution of difference equations byusing Z-transform techniques for discrete time systems.
- 6. Solve industrial case studies using Transforms and Partial Differential Equations.

TEXT BOOKS:

- 1. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, New Delhi, 2018.
- 2. Kreyszig E, "Advanced Engineering Mathematics ", 10th Edition, John Wiley, New Delhi, India, 2018.
- 3. Kandaswamy, Thilagavathy and Gunavathy, "Engineering Mathematics", 28th Edition, S.Chand and CO, New Delhi, 2020

- 1. "Integral Transforms and Engineering: Theory, Methods, and Applications" by AbdonAtangana and Ali Akgül, published in 2023.
- 2. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 10th Edition, Laxmi Publications Pvt. Ltd, 2021
- James. G., "Advanced Modern Engineering Mathematics", 4thEdition, Pearson Education, New Delhi, 2016.
 - "Advanced Mathematics for Engineering Students" by S. Narayanan, T.K.
- 4. ManicavachagomPillay, and G. Ramanaiah are available in multiple volumes. Volume 3 was published on January 1, 2019.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2018.

CO						PO)						PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	-	-	-	•	-	-	1	-	-	1	-	-	-	
2	3	3	-	-	-	•	-	-	1	-	-	1	-	-	-	
3	3	3	-	-	-		-	-	1	-	-	1	-	-	-	
4	3	3	-	-	-	-	-	-	1	-	-	1	-	-	-	
5	3	3	-	-	-	-	-	-	1	-	-	1	-	-	-	
6	3	3	-	ı	-	ı	-	-	1	-	-	1	-	-	-	
	LOW (1); MEDIUM (2); HIGH (3)															

XXXXX

STRENGTH OF MATERIALS

L T P C 3 1 0 4

COURSE OBJECTIVES:

The objectives of the course are to impart knowledge on

- ✓ Direct stresses and strains due to tension and compression.
- ✓ Bending stress and shear stress distribution across cross sections.
- ✓ Failure theories of materials and strain energy principles.

UNIT - 1 SIMPLE STRESSES AND STRAINS

10

10

Application: Stretching a rubber band, Thermal stresses in bridges and pavements, Tapering sections in roof trusses and aircraft wings, Pipelines for transporting fluids, pressure vessels for storing gases.

Mechanical properties of materials - Introduction to stress and Strain - Types of stress and strain Stress strain curve - Elastic constants and its relationship - Principle of superposition - Analysis of varying cross sections, Composite sections, Tapering section - Thermal stresses - Principal stress and principal Strains.

UNIT - 2 SHEAR FORCE AND BENDING MOMENT

Application: Design and safety assessment of high-rise buildings, industrial structures and bridges.

Types of loads, supports, beams - Shear force and bending moment for cantilever, Simply supported, Overhanging beams, Fixed, Continuous beams and propped beams - Theorem of three moments.

UNIT - 3 BENDING STRESSES, SHEAR STRESSES AND TORSION 10

Application: Bridge beams and girders, Propeller shafts in ships and automobiles, Crane hooks and lifting equipment.

Theory of simple bending - Neutral axis - Bending stress distribution across cross section - Stress variation along length - Effect of shape of cross section - Section modulus - Shear stress distribution across various cross sections - Torsion equation - Solid and hollow shafts - Combined bending and torsion - Closed and Open Coiled helical springs.

UNIT - 4 STRAIN ENERGY AND THEORIES OF FAILURE 10

Application: Designing thick-walled pressure vessels and pipelines in industries like nuclear, oil, and gas.

Strain energy due to Tension, Compression, Shear, Torsion and Bending - Thick cylinders - Thin cylindrical and spherical shells -Theories of elastic failure.

UNIT - 5 DEFLECTION OF BEAMS

Application: Designing floor systems in high-rise buildings and bridge beams.

Double integration method - Macaulay's method - Area moment method - Conjugate beam

10

method - Strain energy method for determinate beams.

UNIT - 6 COLUMNS 10

Application: Designing columns for buildings, bridges, and other structures to prevent catastrophic buckling failures.

Column classification, behavior - Equivalent Length - Euler's theory - Critical load for prismatic columns with different end conditions - Rankine-Gordon theory - Columns with eccentric load.

TOTAL: 60 PERIODS

OUTCOMES:

After completion of the course, the students will be able to

- 1. Calculate the stresses and strains in members under direct Tension and Compression.
- 2. Calculate the bending and torsion behavior in structural members, including stress distribution, section modulus, and shear stress variations for different cross-sections.
- Evaluate strain energy under different loading conditions and apply theories of elastic failure to analyze the strength of thick cylinders.
- 4. Determine the shear force and bending moment in various types of beams under different loading and support conditions.
- 5. Determine beam deflection using various analytical methods.
- 6. Analyze column behavior, critical load, and stability using Euler's and Rankine-Gordon theories for different end conditions and eccentric loading.

TEXT BOOKS:

- 1. Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand & company Ltd., New Delhi, 2018.
- 2. Bansal. R.K., "A textbook on Strength of Materials", Laxmi Publications.
- 3. Subramanian. R, "Strength of Materials", Oxford University Press, Third edition

- Punmia B.C., Ashok Kumar Jain and Arun Kumar Jain,"Theory of Structures" (SMTS)
 Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2017.
- 2. Vazirani.V.N, Ratwani.M.M, Duggal .S.K Analysis of Structures: Analysis, Design and Detailing of Structures-Vol.1, Khanna Publishers, New Delhi 2014.
- Beer. F.P. &Johnston.E.R. "Mechanics of Materials", Tata McGraw Hill, Sixth Edition, New Delhi, 2010.

CO, PO & PSO MAPPING

CO						PC)					POS			
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	
1	3	3	2	1	-	-	-	-	-	-	-	2	2	2	
2	3	3	2	1	-	-	-	-	-	-	-	2	2	2	
3	3	3	2	1	-	-	-	ı	ı	-	-	2	2	2	
4	3	3	2	1	-	-	-	-	-	-	-	2	2	2	
5	3	3	2	1	-	-	-	-	-	-	-	2	2	2	
6	3	3	2	1	-	-	-	-	-	-	-	2	2	2	
Avg	3	3	2	1	-	-	-	-	-	-	-	2	2	2	
LOW (1);						MEDIUM (2); HIGH (3)									

COURSE OBJECTIVES:

- To introduce fundamental concepts of fluid mechanics, including fluid properties, fluid statics, kinematics, and dynamics.
- To develop analytical skills for solving fluid flow problems, covering pipe flow, dimensional analysis, and flow measurements.
- To explore industrial applications of fluid mechanics, including sustainability, digital transformation, and cost-effective fluid transport solutions.

UNIT - 1 PROPERTIES OF FLUID

Applications: ship design, hydroelectric plants, refrigeration, food processing, jet engines and gas pipelines, efficiency in hydraulic and damping systems.

Continuum concept - CGS, MKS and SI systems - Scope of fluid mechanics - Definitions of a fluid - Fluid properties: Density, Specific Weight, Specific Volume, Specific Gravity, Viscosity, Compressibility and Bulk Modulus, Surface Tension, Capillarity, Vapour Pressure, and Cavitation.

UNIT - 2 FLUID STATICS AND KINEMATICS

10

6

Applications: Design of dam, ships, submarines, offshore platforms, and lifeboats, hot air balloons, underwater tunnels etc.

Basic equation of fluid statics - Manometers - Hydrostatic force on plane - Vertical plane and Horizontal plane - Buoyancy, Stability of floating and submerged bodies. Classification and types of flows - Velocity and Acceleration of a fluid particle - Velocity potential function - Stream potential function - Stream line, streak-line, and path - lines - Flow nets.

UNIT - 3 FLUID DYNAMICS

7

Applications: Pipeline Network design, Dams and Irrigation canals and hydroelectric Dams.

Continuity Equation: One Dimension and Three Dimensions - Euler's equation - Bernoulli's equation - Practical application of Bernoulli's equation - Venturimeter, Orificemeter and Pitot tube - Notches/Weirs - Rectangular and Triangular.

UNIT - 4 FLOW THROUGH PIPES

7

Applications: Water Distribution Networks, Oil and Gas pipeline transportation.

Reynolds experiment - Laminar flow in pipes and between parallel plates - Hagen Poiseuille equation for flow through circular pipes - Darcy - Weisbach equation - Moody diagram - Major and Minor losses of flow in pipes - Pipes in series and parallel - Equivalent pipes.

UNIT - 5 DIMENSIONAL ANALYSIS AND MODEL STUDIES 8

Applications: Designing hydraulic structures, vehicles, aircraft, ships, and industrial systems using scale models for accurate performance prediction.

Fundamental dimensions - Dimensional homogeneity - Rayleigh's method and Buckingham Pi theorem - Dimensionless parameters - Similitude: geometric, Kinematic and dynamic similarity and model studies: Froude, Reynold, Weber, Euler and Mach laws, Distorted and undistorted models.

UNIT - 6 CURRENT TRENDS IN FLUID MECHANICS

- 7

Role of fluid mechanics in industrial applications - Strategic importance in sectors like oil & gas,

water management and transportation - Digital transformation in fluid systems: Automation and robotics in pipeline management - Sustainability and environmental impact: Eco-friendly pipeline materials and coatings and Carbon footprint reduction in fluid transportation - Business strategy and market trends (Cost-effective pipeline and transportation solution).

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the students will be able to

- 1. Describe the continuum concept and its fluid properties.
- 2. Solve problems on pressure, hydrostatic forces, buoyancy, and analyze fluid flow types.
- 3. Use continuity, Euler's, and Bernoulli's equations in engineering problems and explain the flow measurement devices.
- 4. Calculate pipeline losses for both laminar and turbulent flow conditions.
- 5. Compute flow parameters using dimensional analysis and similarity principles for fluid flow studies.
- 6. Explain sustainability practices, eco-friendly materials, carbon footprint reduction, and cost-effective pipeline solutions that influence market trends.

TEXT BOOKS:

- 1. Modi P. N and Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard Book House, New Delhi, 20th edition, 2015.
- 2. Fox, R. W. McDonald, A.T., Mitchell, J.W., Introduction to Fluid Mechanics, 2020, Tenth Edition, John Wiley & Sons, USA.

REFERENCES:

- 1. Bansal R. K., "A Text book of Fluid Mechanics and Hydraulic Machines", Laxmi Publications, New Delhi, 2017.
- 2. Subramanya K., "Fluid Mechanics and Hydraulic Machines", Tata McGraw Hill Publishing Co. Ltd, 2002.
- 3. Rajput R. K., Fluid Mechanics and Hydraulic Machines, S. Chand, 2014.
- 4. https://nptel.ac.in/courses/112105269
- 5. https://nptel.ac.in/courses/105103095

СО						PO						PSO			
	1	2	3	4	5	6	7	8	9	10	11	1	2	3	
1	3	2	-	-	-	-	-	-	-	-	-	3	3	2	
2	3	3	2	-	-	-	-	-	-	-	-	3	3	2	
3	3	3	2	-	-	-	-	-	-	-	-	3	3	2	
4	3	3	2	-	-	-	-	-	-	-	-	3	3	2	
5	3	3	2	-	-	-	-	-	-	-	-	3	3	2	
6	2	2	1	-	-	-	-	-	-	-	-	-	-	-	
				LOV	V(1);	ME	DIUM	(2);	HIG	H (3)					

COURSE OBJECTIVES:

XXXX

- To develop effective professional communication skills, including greetings, polite conversations, and intervening in dialogues.
- To introduce and practice framing questions using model auxiliaries (can, could, would) and WH questions in a technical environment.
- To apply tone, intonation, and voice modulation effectively in two-way conversations to enhance communication clarity and impact.
- To practice essential one-on-one conversation techniques to communicate effectively in interview settings.
- ✓ To practice various discussion activities.
- ✓ To understand the do's and don'ts of group discussions and perform group discussions.

UNIT – 1 PROFESSIONAL COMMUNICATION 2

Creating conversation - Professional greetings and courtesies - Introduction to polite conversation techniques – Intervening when two people are conversing - Polite disagreement **Practice**: Initial greeting, Transitioning between conversations, Practicing professional greetings using conversation and Courtesy vocabularies in different scenarios

Role-play: Conducting professional conversations

UNIT – 2 FRAMING QUESTIONS 2

Basics of framing questions using model auxiliaries (can, could, would, etc.) - WH questions and Yes/No questions in technical environment

Practice: Role - play exercises in question framing, Conducting Q&A sessions based on conversations, Effective questioning techniques in various settings

UNIT – 3 LISTENING TWO-WAY CONVERSATION 2

Understanding tone and intonation in conversations - Responding appropriately in two - way conversations, practicing real - life two - way conversations

Practices: Practicing two - way conversation with tone and intonation - Voice modulation

UNIT – 4 TWO-WAY CONVERSATION – BASICS 2

"Basic one and one techniques in interview"

Practice: Conversation tips for effective two-way dialogue - Common conversation pit falls

(how to avoid monotones, Long sentences and Breath control during conversation).

UNIT – 5 DISCUSSION 2

Techniques of discussion - Brainstorming questions, debate and argumentation, panel discussion

Practice: Asking brainstorming questions

UNIT – 6 BASICS OF GROUP DISCUSSION

Dos and Don'ts of group discussion – Evaluation process

Practice: Three group discussions

TOTAL: 12 PERIODS

2

OUTCOMES:

At the end of the course the students would be able to

- 1. Initiate and manage professional conversations with correct greetings and courtesies.
- Demonstrate proficiency in asking clear and appropriate questions in professional and 2.
- technical conversations.
- 3. Adjust their tone and intonation based on the context of the conversation.
- 4. Confidently navigate one-on-one interviews and other personal conversations.
- 5. Formulate and ask open-ended brainstorming questions.
- Understand the importance and purpose of group discussions in professional and
- 6. academic settings.

- 1. "Advanced Communication Skills" by Mathew Richardson, Charlie Creative Lab, 2020.
- Andy Gillett, Using English for Academic purposes for students in higher Education. 2.
- https://www.uefap.org/reading/
- R. K. Agnihotri and A. L. Khanna. English for Academic and Professional Purposes.
- 3. Macmillan India, 2008
- Swales, John M., and Christine B. Feak. Academic Writing for Graduate Students: 4.
- Essential Tasks and Skills. University of Michigan Press, 2012

CO				PSO												
	1	2	3	4	5	6	7	8	9	10	11	1	2	3		
1	-	-	-	-	-	-	-	-	3	3	-	-	-	-		
2	-	-	-	-	-	-	-	-	3	3	-	-	-	-		
3	-	-	-	-	-	-	-	-	3	3	-	-	-	-		
4	-	-	-	_	-	-	-	-	3	3	-	-	-	-		
5	-	-	-	-	-	-	-	-	3	3	-	-	-	-		
6	-	-	-	-	-	-	-	-	3	3	-	-	-	-		
	LOW (1); MEDIUM (2);									HIGH (3)						

INVENTION – PRINCIPLES AND PRACTICES

Course Objectives:

- 1. Understand the fundamental concepts of invention, innovation, and creativity through historical case studies of engineering breakthroughs.
- 2. Learn the 40 Inventive Principles of TRIZ and their application in systematic engineering problem-solving.
- 3. Gain knowledge about patents, copyrights, trademarks, and the legal framework for protecting innovations.
- 4. Study various knowledge-sharing methods, reverse engineering, and product analysis techniques for innovation development.
- 5. Implement structured methodologies to approach problem-solving in engineering applications.
- 6. Foster creativity and critical thinking skills to develop innovative solutions for complex engineering challenges.

UNIT 1: Introduction to Inventive Principles

2 Hours

Definition of invention and innovation - creativity - History - Case studies of successful engineering innovations.

UNIT 2: TRIZ and Systematic Problem Solving

2 Hours

Inventive Principles of TRIZ - Engineering applications of TRIZ principles - Practical exercises and brainstorming

UNIT 3: Intellectual Property and Patent Laws

2 Hours

Introduction to patents - Types of patents(Utility Patents, Design Patents , Plant Patents , Provisional Patents , Non-Provisional Patents , Software Patents , Business Method Patents) - comparison - copyrights and trademarks - Patent filing process and IP rights

UNIT 4: Open-source innovation and knowledge sharing

Methods of problem identification, Reverse engineering and product analysis- Future Trends and Innovations

UNIT 5: Ethics in Engineering and Innovation

2 Hours

Importance of ethics in engineering - Professional codes of ethics (IEEE, ASME, ASCE, etc.)

Case studies of ethical dilemmas in engineering,

UNIT 6: Practical Implementation & Case Studies

2 Hours

Case studies of famous Patent and their impact analysis on industry, economy, and society

Course Outcomes:

Upon successful completion of this course, students will be able to:

- 1. Demonstrate an understanding of how engineering innovations emerge and their impact on society.
- 2. Utilize systematic TRIZ-based approaches to address engineering challenges effectively.
- 3. Understand the importance of intellectual property protection and the procedures involved in securing patents.
- 4. Apply open-source methodologies, reverse engineering, and product analysis for innovative problem-solving.
- 5. Evaluate past engineering innovations to extract key lessons and best practices.
- 6. Create and refine innovative ideas using structured methodologies like TRIZ and other inventive principles.

CONSTRUCTION MATERIALS

XXXXX

COURSE OBJECTIVES:

- ✓ To impart knowledge on material properties and their applications in construction.
- ✓ To provide hands on experience on laboratory testing of different construction materials.

UNIT - 1 STONES, BRICKS AND LIME

8

Application: Building Construction, Pavements & Drain Covers, Whitewashing, Soil Stabilization, Road Construction.

Sources of stones - Criteria for selection - Tests on stones - Qualities of a good building stone - Deterioration and preservation of stone work - Bricks - Classification - Manufacturing of clay bricks - Qualities of good bricks - Fire-bricks - Fly-ash bricks - Concrete hollow blocks - Lightweight concrete blocks - Lime - I.S. classifications of lime - Preparation of lime mortar.

UNIT - 2 TIMBER AND STEEL

7

Application: Structural beams, Planks, Doors and Window frames, Reinforcement bars, Railway tracks, Heavy machinery and Cutting tools.

Timber - Processing of timber - Seasoning of timber - Market forms - Industrial timber - Plywood - Veneer - Steel - Properties of mild steel - Properties of hard steel - Market forms - Non-ferrous metals: Aluminium, Copper, Nickel - Their properties and uses.

UNIT - 3 FINISHES AND MODERN MATERIALS

8

Application: Walls, Wood and metal surfaces, Windows, Interiors, Basements, Roofs and Wet areas.

Paints - Varnishes - Distempers - Painting on different surfaces - Defects in painting - Composite materials - Shape memory alloys - Glass - Properties and Types - Modern floor finishing materials - Ceramics and Clay products - Polymer floor finishes - Water proofing materials.

UNIT - 4 CHEMICAL AND MINERAL ADMIXTURES

8

Application: Construction projects such as buildings, Bridges, Roads, Dams and Water tanks. Accelerators - Retarders - Plasticizers - Super plasticizers - Waterproofers - Mineral Admixtures like Fly Ash, Silica Fume, Ground Granulated Blast Furnace Slag and metakaolin - Their effects on concrete properties.

UNIT - 5 SUSTAINABLE CONSTRUCTION MATERIALS

9

Application: Residential, Commercial, Industrial and Infrastructure projects to promote ecofriendly building practices.

Definition - Classification and Properties of Sustainable Materials - Natural Sustainable Materials - Bamboo, Rammed earth, Cork, Straw bale - Engineered Sustainable Materials - Recycled Concrete, Engineered Wood - Bio-based materials - Hempcrete, Mycelium, Algae-Based Bricks.

UNIT - 6 BUSINESS STRATEGY AND RECENT TRENDS IN CONSTRUCTION MATERIALS

SWOT and PESTLE Analysis in Construction Materials Business - Pricing Strategies for Construction Materials - Investment Strategies in Material Production and Distribution - Case Studies of Leading Construction Material Companies.

5

OUTCOMES:

Upon completion of the course, the students will be able to:

- 1. Infer the properties and testing methods for stones, bricks and lime.
- 2. Classify the properties of timber and steel.
- 3. Describe the properties of finishes and modern materials.
- 4. Interpret the usage of admixtures in concrete.
- 5. Summarize the existing sustainable construction materials.
- 6. Illustrate the recent trends and business strategy in the construction industry.

TEXT BOOKS:

- 1. Rangwala, "Engineering Materials", Charotar Publishing House Pvt. Ltd., 43rd Edition, 2019.
- 2. Rajput. R. K., "Engineering Materials", S. Chand and Company Ltd., 2008.
- 3. Varghese. P. C, "Building Materials", PHI Learning Pvt. Ltd, New Delhi, 2015.
- 4. Duggal. S. K. "Building Materials", 5th Edition, New Age International, 2019.
- 5. Jason F. McLennan, "The Philosophy of Sustainable Design", Ecotone Publishing Co., 2004.

- 1. Gambhir. M.L., & Neha Jamwal., "Building Materials, products, properties and systems", Tata McGraw Hill Educations Pvt. Ltd, New Delhi, 2012.
- 2. Jagadish. K. S, "Alternative Building Materials Technology", New Age International, 2017.
- 3. IS 383 1970: Indian Standard specification for coarse and fine aggregate from natural sources for concrete, 2011.
- 4. IS 1141:1993 Seasoning of timber.
- 5. IS 1786:1985 Specification for high strength deformed steel bars and wires for concrete reinforcement.
- 6. IS 15489: 2004 Paint, Plastic emulsion.
- 7. IS 1077: 1992 Common Burnt Clay Building Bricks.
- 8. Regina Leffers, "Sustainable Construction and Design", Prentice Hall, 2009.

LABORATORY

LIST OF EXPERIMENTS:

- 1. Determination of specific gravity of cement.
- 2. Determination of fineness of cement.
- 3. Determination of consistency of cement.
- 4. Determination of initial and final setting time of cement.
- 5. Determination of flakiness index of coarse aggregate.
- 6. Determination of elongation index of coarse aggregate.
- 7. Determination of specific gravity of fine aggregate and coarse aggregate.
- 8. Determination of water absorption of fine aggregate and coarse aggregate.
- 9. Determination of compressive strength of bricks.
- 10. Determination of water absorption of bricks.

TOTAL: 30 PERIODS

СО				PSOs										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
1	3	-	-	-	-	-	-	-	-	-	-	3	1	1
2	3	-	-	-	-	-	-	-	-	-	-	3	1	1
3	3	-	-	-	-	-	-	-	-	-	-	3	1	1
4	3	-	-	-	-	-	-	-	-	-	-	3	1	1
5	3	-	-	-	-	-	-	-	-	-	-	3	1	1
6	3	-	-	-	-	-	-	-	-	-	-	3	1	1
				LOW	(1);	MEI	DIUM	(2);	HIGH	I (3)				

XXXXX (Lab Code)

COMPUTER AIDED BUILDING DRAWING LABORATORY

L T P C 0 0 3 1.5

COURSE OBJECTIVES:

- To draft plan, elevation, sectional views, and structural layouts for both residential and industrial buildings in 2D.
- To draft essential structural elements, including beams and columns, for building plans in 2D.
- To prepare and integrate service layouts, ensuring compliance with local standards and building codes in 2D.

LIST OF EXERCISES:

45

- Study of Building Bylaws rules and regulations and commands used for CAD.
- Draw the Plan, Elevation and Sectional view of single storey residential building.
- 2. Draw the Plan, Elevation and Sectional view of multi storey residential building.
- 3. Draw the Beam Layout for a given plan diagram.
- 4. Draw the Column Layout for a given building plan diagram.
- 5. Draw the Plumbing layout for a given building plan diagram.
- 6. Draw the Electrical Layout for a given building plan diagram.
- 7. Draw the Fire Fighting Layout for a given building plan diagram.
- 8. Draw the Plan and Sectional view of Septic Tank with soak pit.
- 9. Draw the components of an Industrial Truss.
- 10. Draw the plan for G+2 Residential building by considering all approval aspects.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course using Auto CAD the students will be able to

- 1. Create detailed drawings, including plans, elevations, sectional views, and structural layouts for residential and industrial buildings.
- 2. Design and draft essential building service layouts, such as plumbing, electrical, and fire-fighting systems, integrating them into building plans.
- 3. Apply building codes and regulations to prepare approval plans and design sanitation systems, such as septic tanks and soak pits, for residential and industrial structures.

co				PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
1	2	-	-	-	2	-	-	-	-	-	-	2	1	1
2	2	-	-	-	2	-	-	-	-	-	-	2	1	1
3	2	-	-	-	2	-	-	-	-	-	-	2	1	1
				LOV	V (1);	ME	DIUM	(2);	HIG	H (3)				

XXXXX

STRENGTH OF MATERIALS LABORATORY

L T P C 0 0 2 1

(Lab Code)

COURSE OBJECTIVES: By the end of the course, students should be able to

- Understand the fundamental concepts and principles of material behavior under different loading conditions.
- Conduct various mechanical tests on metals to evaluate their strength, hardness, and deformation characteristics.
- Develop practical skills in using testing equipment and measuring instruments for material testing.

LIST OF EXPERIMENTS:

45

- 1. Tension test on steel rod.
- 2. Torsion test on mild steel rod.
- 3. Deflection test on metal beam.
- 4. Double shear test on metal.
- 5. Impact test on metal specimen (Izod and Charpy).
- 6. Hardness test on metals (Rockwell and Brinell Hardness Tests).
- 7. Compression test on helical spring.
- 8. Deflection test on carriage spring.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students is expected to be able to

- 1. Demonstrate proficiency in performing mechanical testing on metals and interpreting the test results.
- 2. Evaluate the tensile, shear, and torsional strength of materials and apply the concepts of stress and strain.
- 3. Analyze the deflection of beams and springs under various loading conditions and relate the results to material properties.
- 4. Compare hardness values using different hardness testing methods (Rockwell, Brinell).

CO						PO						PSO			
	1 2 3 4 5						7	8	9	10	11	1	2	3	
1	3	3	2	-	-	-	-	-	-	-	-	3	2	2	
2	3	3	3	-	-	-	-	-	-	-	-	3	2	2	
3	3	3	3	-	-	-	-	-	-	-	-	3	2	2	
4	3	3	3												
,				LOV	V (1);	ME	DIUM	(2);	HIG	H (3)					